Skip to content

huggingface

SGHFLM

Bases: HFLM

Eval harness model class for evaluating Stained Glass Transforms.

Parameters:

Name Type Description Default
transform_model_path str

The path to the Stained Glass Transform.

required
apply_stainedglass bool

Whether to apply the Stained Glass Transform.

required
args Any

Additional arguments to pass to the parent class.

()
kwargs Any

Additional keyword arguments to pass to the parent class.

{}

apply_chat_template

apply_chat_template(chat_history: list[dict[str, str]]) -> str

Return the context from the chat history because the template is applied in the _encode_pair method.

Parameters:

Name Type Description Default
chat_history list[dict[str, str]]

The chat history.

required

Raises:

Type Description
ValueError

If the chat history is not a single user message.

Returns:

Type Description
str

The context.

tok_batch_encode

tok_batch_encode(strings: list[str], padding_side: str = 'left', left_truncate_len: int | None = None, truncation: bool = False) -> tuple[torch.Tensor, torch.Tensor]

Encode a batch of strings into input ids and attention masks.

Parameters:

Name Type Description Default
strings list[str]

The list of strings to encode.

required
padding_side str

The side to pad the sequences.

'left'
left_truncate_len int | None

The length to truncate the left side of the sequences.

None
truncation bool

Whether to truncate the sequences.

False

Returns:

Type Description
tuple[torch.Tensor, torch.Tensor]

A tuple of input embeddings and attention masks if apply_stainedglass is True, otherwise the input ids and attention masks.