huggingface
SGHFLM
¶
Bases: HFLM
Eval harness model class for evaluating Stained Glass Transforms.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
transform_model_path |
str
|
The path to the Stained Glass Transform. |
required |
apply_stainedglass |
bool
|
Whether to apply the Stained Glass Transform. |
required |
args |
Any
|
Additional arguments to pass to the parent class. |
()
|
kwargs |
Any
|
Additional keyword arguments to pass to the parent class. |
{}
|
apply_chat_template
¶
Return the context from the chat history because the template is applied in the _encode_pair
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
chat_history |
list[dict[str, str]]
|
The chat history. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If the chat history is not a single user message. |
Returns:
Type | Description |
---|---|
str
|
The context. |
tok_batch_encode
¶
tok_batch_encode(strings: list[str], padding_side: str = 'left', left_truncate_len: int | None = None, truncation: bool = False) -> tuple[torch.Tensor, torch.Tensor]
Encode a batch of strings into input ids and attention masks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
strings |
list[str]
|
The list of strings to encode. |
required |
padding_side |
str
|
The side to pad the sequences. |
'left'
|
left_truncate_len |
int | None
|
The length to truncate the left side of the sequences. |
None
|
truncation |
bool
|
Whether to truncate the sequences. |
False
|
Returns:
Type | Description |
---|---|
tuple[torch.Tensor, torch.Tensor]
|
A tuple of input embeddings and attention masks if |