quantile
Classes:
Name | Description |
---|---|
QuantileMetric |
Computes quantiles over a set of observations. |
QuantileMetric
¶
Bases: CatMetric
Computes quantiles over a set of observations.
Methods:
Name | Description |
---|---|
__init__ |
Construct a |
compute |
Aggregate the observations and compute the configured quantiles. |
Attributes:
Name | Type | Description |
---|---|---|
dtype |
dtype
|
The |
dtype
property
¶
dtype: dtype
The torch.dtype
that each update
value will be cast to and thereby the torch.dtype
of the compute
result also.
torch.quantile
requires the q
tensor to have same dtype
as the input tensor (the compute
result) and both must be either
float32
or float64
.
__init__
¶
__init__(
q: float | Iterable[float] | Tensor,
interpolation: Literal[
"linear", "lower", "higher", "nearest", "midpoint"
]
| str = "linear",
nan_strategy: Literal[
"error", "warn", "ignore", "disable"
]
| float = "warn",
**kwargs: Any,
) -> None
Construct a QuantileMetric
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
float | Iterable[float] | Tensor
|
The quantiles to compute. Values should be in the range [0, 1]. Should be a tensor, or a list or tuple of |
required |
|
Literal['linear', 'lower', 'higher', 'nearest', 'midpoint'] | str
|
One of:
* |
'linear'
|
|
Literal['error', 'warn', 'ignore', 'disable'] | float
|
One of:
* |
'warn'
|
|
Any
|
Additional arguments to pass to the base metric class. |
required |
compute
¶
Aggregate the observations and compute the configured quantiles.
Returns:
Type | Description |
---|---|
tuple[torch.Tensor, dict[float, torch.Tensor]]
|
The observations and a mapping of quantiles to their corresponding value. |