quantile
Classes:
| Name | Description | 
|---|---|
| QuantileMetric | Computes quantiles over a set of observations. | 
    
              Bases: CatMetric
Computes quantiles over a set of observations.
Methods:
| Name | Description | 
|---|---|
| __init__ | Construct a  | 
| compute | Aggregate the observations and compute the configured quantiles. | 
Attributes:
| Name | Type | Description | 
|---|---|---|
| dtype | dtype | The  | 
property
  
¶
dtype: dtype
The torch.dtype that each update value will be cast to and thereby the torch.dtype of the compute result also.
torch.quantile requires the q tensor to have same dtype as the input tensor (the compute result) and both must be either
float32 or float64.
__init__(
    q: float | Iterable[float] | Tensor,
    interpolation: Literal[
        "linear", "lower", "higher", "nearest", "midpoint"
    ]
    | str = "linear",
    nan_strategy: Literal[
        "error", "warn", "ignore", "disable"
    ]
    | float = "warn",
    **kwargs: Any,
) -> None
Construct a QuantileMetric.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
|                    | float | Iterable[float] | Tensor | The quantiles to compute. Values should be in the range [0, 1]. Should be a tensor, or a list or tuple of  | required | 
|                    | Literal['linear', 'lower', 'higher', 'nearest', 'midpoint'] | str | One of:
*  | 'linear' | 
|                    | Literal['error', 'warn', 'ignore', 'disable'] | float | One of:
*  | 'warn' | 
|                    | Any | Additional arguments to pass to the base metric class. | required | 
    Aggregate the observations and compute the configured quantiles.
Returns:
| Type | Description | 
|---|---|
| tuple[torch.Tensor, dict[float, torch.Tensor]] | The observations and a mapping of quantiles to their corresponding value. |