cloak
Functions:
| Name | Description | 
|---|---|
| composite_cloak_loss_factory | Create a loss function to train a Stained Glass Transform using  | 
composite_cloak_loss_factory(
    noisy_model: NoisyModel[ModuleT, ..., NoiseLayerT],
    loss_function: Callable[LossFunctionP, Tensor],
    alpha: float,
    respect_std_mask: bool = True,
) -> tuple[
    Callable[sg_transform_loss.LossFunctionP, torch.Tensor],
    Callable[[], ComponentLossesDict],
    Callable[[], HyperparametersDict],
]
Create a loss function to train a Stained Glass Transform using negative_log_mean.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
|                    | NoisyModel[ModuleT, ..., NoiseLayerT] | The model containing both the base model and the Stained Glass Transform. | required | 
|                    | Callable[LossFunctionP, Tensor] | The base model task loss function to wrap. | required | 
|                    | float | The interpolation factor between the task loss (maximizing task performance) and the Stained Glass Transform loss (maximizing transformation strength). Should be in the range [0, 1], where 0 corresponds to higher task performance and 1 corresponds to higher transformation strength. | required | 
|                    | bool | Some NoiseLayers'  | True | 
Returns:
| Type | Description | 
|---|---|
| tuple[Callable[sg_transform_loss.LossFunctionP, torch.Tensor], Callable[[], ComponentLossesDict], Callable[[], HyperparametersDict]] | A tuple of 3 functions: the composite loss function, a function to retrieve the loss components, and a function to retrieve the | 
| tuple[Callable[sg_transform_loss.LossFunctionP, torch.Tensor], Callable[[], ComponentLossesDict], Callable[[], HyperparametersDict]] | hyperparameters. These functions may be called at most once each after a forward pass through both models. |