estimators
Classes:
| Name | Description | 
|---|---|
| Estimator | Defines an interface for estimating noise components from input values. | 
| PatchEstimator | Defines an interface for estimating noise components using non-overlapping 2D convolutions over input image(s). | 
    
              Bases: Generic[ModuleT, OptionalParameterizationT, OptionalMaskerT_contra], Module
Defines an interface for estimating noise components from input values.
Estimators should return a tensor of a broadcastable shape to the input tensor.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
|                    | ModuleT | The module to use to estimate the unparameterized noise component. | required | 
|                    | str | The name of the parameter to pass the input tensor as to the  | required | 
|                    | OptionalParameterizationT | The optional parameterization to apply to the output of  | None | 
|                    | OptionalMaskerT_contra | The optional masker to apply to the output of the  | None | 
Added in version 0.37.0.
Methods:
| Name | Description | 
|---|---|
| __call__ | Estimate noise components from input values. | 
| forward | Estimate noise components from input values. | 
| reset_parameters | Reinitialize parameters and buffers. | 
          __call__(
    input: Tensor,
    noise_mask: Tensor | None = None,
    **kwargs: Any,
) -> tuple[torch.Tensor, torch.Tensor | None]
__call__(
    input: Tensor,
    noise_mask: Tensor | None = None,
    **kwargs: Any,
) -> tuple[torch.Tensor, torch.Tensor | None]
__call__(
    input: Tensor,
    noise_mask: Tensor | None = None,
    **kwargs: Any,
) -> tuple[torch.Tensor, torch.Tensor | None]
__call__(
    input: Tensor,
    noise_mask: Tensor | None = None,
    **kwargs: Any,
) -> tuple[torch.Tensor, torch.Tensor | None]
Estimate noise components from input values.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
|                    | Tensor | The tensor to estimate noise components from. | required | 
|                    | Tensor | None | An optional mask tensor to use to select a subset of the elements of the estimated standard deviations for computing
a mask to apply to the input. If  | None | 
|                    | Any | Additional keyword arguments to  | required | 
Returns:
| Type | Description | 
|---|---|
| tuple[torch.Tensor, torch.Tensor | None] | A tuple containing the estimated noise components and an input mask if there is a  | 
forward(
    input: Tensor,
    noise_mask: Tensor | None = None,
    **kwargs: Any,
) -> tuple[torch.Tensor, torch.Tensor | None]
Estimate noise components from input values.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
|                    | Tensor | The tensor to estimate noise components from. | required | 
|                    | Tensor | None | An optional mask tensor to use to select a subset of the elements of the estimated standard deviations for computing
a mask to apply to the input. If  | None | 
|                    | Any | Additional keyword arguments to  | required | 
Returns:
| Type | Description | 
|---|---|
| tuple[torch.Tensor, torch.Tensor | None] | A tuple containing the estimated noise components and an input mask if there is a  | 
    Reinitialize parameters and buffers.
This method is useful for initializing tensors created on the meta device.
    
              Bases: Estimator[Conv2d, OptionalParameterizationT, OptionalMaskerT_contra]
Defines an interface for estimating noise components using non-overlapping 2D convolutions over input image(s).
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
|                    | Conv2d | The 2D convolutional module to use. The estimator must have a stride equal to its kernel size (non-overlapping) and output channels equal to the input channels times the product of the kernel side lengths (input volume = output volume). | required | 
|                    | str | The name of the parameter to pass the input tensor as to the  | 'input' | 
|                    | OptionalParameterizationT | The optional parameterization to apply to the output of the estimator. | None | 
|                    | OptionalMaskerT_contra | The optional masker to apply to the output of the parameterization. | None | 
|                    | Literal['constant', 'reflect', 'replicate', 'circular'] | Type of padding. One of: constant, reflect, replicate, or circular. | 'constant' | 
|                    | float | Fill value for constant padding. | 0.0 | 
Raises:
| Type | Description | 
|---|---|
| ValueError | If the stride is not equal to the kernel size. | 
| ValueError | If the output channels are not equal to the input channels times the product of the kernel side lengths. | 
| ValueError | If a non-zero padding value is given for a padding mode other than constant. | 
Added in version 0.40.0.
Methods:
| Name | Description | 
|---|---|
| __call__ | Estimate noise components from input values. | 
| forward | Estimate noise components from input values. | 
| module_from_input_shape | Construct a non-overlapping Conv2d from the given parameters. | 
| reset_parameters | Reinitialize parameters and buffers. | 
          __call__(
    input: Tensor,
    noise_mask: Tensor | None = None,
    **kwargs: Any,
) -> tuple[torch.Tensor, torch.Tensor | None]
__call__(
    input: Tensor,
    noise_mask: Tensor | None = None,
    **kwargs: Any,
) -> tuple[torch.Tensor, torch.Tensor | None]
__call__(
    input: Tensor,
    noise_mask: Tensor | None = None,
    **kwargs: Any,
) -> tuple[torch.Tensor, torch.Tensor | None]
__call__(
    input: Tensor,
    noise_mask: Tensor | None = None,
    **kwargs: Any,
) -> tuple[torch.Tensor, torch.Tensor | None]
Estimate noise components from input values.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
|                    | Tensor | The tensor to estimate noise components from. | required | 
|                    | Tensor | None | An optional mask tensor to use to select a subset of the elements of the estimated standard deviations for computing
a mask to apply to the input. If  | None | 
|                    | Any | Additional keyword arguments to  | required | 
Returns:
| Type | Description | 
|---|---|
| tuple[torch.Tensor, torch.Tensor | None] | A tuple containing the estimated noise components and an input mask if there is a  | 
forward(
    input: Tensor,
    noise_mask: Tensor | None = None,
    **kwargs: Any,
) -> tuple[torch.Tensor, torch.Tensor | None]
Estimate noise components from input values.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
|                    | Tensor | The tensor to estimate noise components from. | required | 
|                    | Tensor | None | An optional mask tensor to use to select a subset of the elements of the estimated standard deviations for computing
a mask to apply to the input. If  | None | 
|                    | Any | Additional keyword arguments to  | required | 
Returns:
| Type | Description | 
|---|---|
| tuple[torch.Tensor, torch.Tensor | None] | A tuple containing the estimated noise components and an input mask if there is a  | 
staticmethod
  
¶
module_from_input_shape(
    color_channels: int,
    patch_size: int | tuple[int, int] | Sequence[int],
) -> nn.Conv2d
Construct a non-overlapping Conv2d from the given parameters.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
|                    | int | The number of color channels in the input image(s). | required | 
|                    | int | tuple[int, int] | Sequence[int] | The dimension of the non-overlapping rectangular patches to tile the image with; if a single value is given, a square patch will be used. | required | 
Returns:
| Type | Description | 
|---|---|
| nn.Conv2d | The constructed Conv2d. | 
    Reinitialize parameters and buffers.
This method is useful for initializing tensors created on the meta device.