noisy_model
BackwardWrapper
¶
Bases: Protocol
Interface for managed grad scalers, like accelerate.Accelerator or lightning.fabric.fabric.Fabric.
NoisyModel
¶
Bases: SGModel[M]
, Generic[M, NLP, NL]
Wrapper class that adds noise to the output of an arbitrary layer of the base model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
noise_layer_class |
NoiseLayerConstructor[NLP, NL]
|
The type of noise that is added to the given model. |
required |
base_model |
M
|
The model to add noise to. |
required |
input_shape |
tuple[int, ...]
|
The shape of the model input; used to infer the shape of the noise layer. |
required |
target_layer |
str
|
Name of the layer whose output noise will be added to. A submodule of the model may be specified by providing the
|
'input'
|
target_parameter |
str | None
|
If the target layer is the input, the keyword parameter to which noise is added (default: None). By default, noise is added to the first positional parameter of the model's forward method. |
None
|
*args |
args
|
Positional arguments to the |
()
|
**kwargs |
kwargs
|
Keyword arguments to the |
{}
|
Raises:
Type | Description |
---|---|
AttributeError
|
If the target_layer does not exist, or if the target layer already has a noise_layer attribute. |
ValueError
|
If the target_layer is not called from model.forward() and its size cannot be determined. |
target_parameter
property
¶
target_parameter: str | None
The base_model.forward
parameter to which noise is added.
target_parameter_index
cached
property
¶
target_parameter_index: int
The base_model.forward
parameter to which noise is added.
forward
¶
Delegate calls to the base model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
args |
Any
|
Inputs to the base model. |
required |
kwargs |
Any
|
Keyword arguments to the base model. |
required |
Returns:
Type | Description |
---|---|
NoisyModelOutput[Any]
|
The result of the underlying model with noise added to the output of the base model's target layer. |
noise_loss_wrapper
¶
noise_loss_wrapper(criterion: Callable[Concatenate[T, CriterionP], Tensor | dict[str, Tensor]], alpha: float | None, grad_scaler: GradScaler | None = None, backward_wrapper: BackwardWrapper | None = None) -> Callable[Concatenate[NoisyModelOutput[T], CriterionP], dict[str, torch.Tensor]]
Wrap the given criterion with a criterion that optimizes the noise layer.
This method has 2 modes
- If
alpha
is afloat
between0.0
and1.0
, the returned criterion interpolates between the original criterion and a noise loss term, with0.0
devolving to the original criterion and1.0
devolving to the noise loss term. - If
alpha
isNone
, the returned criterion adaptively calculates the noise layer parameter gradient update using the gradients of the original criterion and the noise loss term, optimizing whichever is larger, using only the components of the larger gradient tensor that are orthogonal to the smaller gradient tensor. The loss returned is the original criterion loss, differentiable, but detached from the graph, since the wrapped criterion callsbackward()
itself.
Note
criterion
must either return a torch.Tensor
or a dict
containing torch.Tensor
and must necessarily include the key
'model_loss'.
Note
The noise layer must return a loss tensor in order to optimize the noise layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
criterion |
Callable[Concatenate[T, CriterionP], Tensor | dict[str, Tensor]]
|
The original loss function. |
required |
alpha |
float | None
|
Interpolation factor between the original criterion (0.0) and the noise loss term (1.0). Higher means that noise is
learned more quickly and that more noise can be added. This is a model, task, loss function... dependent hyperparameter
that, in practice, really does range from 0.0001 to 0.9999. Without prior knowledge, you will need to perform a grid search
over different alphas to find the best one for your model and task. Alternatively, if |
required |
grad_scaler |
GradScaler | None
|
A |
None
|
backward_wrapper |
BackwardWrapper | None
|
A managed |
None
|
Returns:
Type | Description |
---|---|
Callable[Concatenate[NoisyModelOutput[T], CriterionP], dict[str, torch.Tensor]]
|
A criterion that optimizes the noise layer using the wrapped criterion and the noise layer loss. |
Raises:
Type | Description |
---|---|
ValueError
|
If |
ValueError
|
If |
Examples:
>>> from stainedglass_core import model as sg_model, noise_layer as sg_noise_layer
>>> model = nn.Linear(2, 2)
>>> model1 = sg_model.NoisyModel(
... sg_noise_layer.CloakNoiseLayer1, model, input_shape=(-1, 2)
... )
>>> model2 = sg_model.NoisyModel(
... sg_noise_layer.CloakNoiseLayer2,
... model,
... input_shape=(-1, 2),
... percent_to_mask=0.42,
... )
>>> criterion = nn.functional.mse_loss
>>> input = torch.rand(2, 2)
>>> labels = torch.randint(0, 2, (2, 2), dtype=torch.float32)
Alpha
>>> stainedglass_loss = model1.noise_loss_wrapper(criterion, alpha=0.8)
>>> losses = stainedglass_loss(model1(input), labels)
>>> losses
{'model_loss': tensor(...), 'noise_loss': tensor(...), 'composite_loss': tensor(...)}
>>> losses["composite_loss"].backward()
>>> stainedglass_loss = model2.noise_loss_wrapper(criterion, alpha=0.8)
>>> losses = stainedglass_loss(model1(input), labels)
>>> losses
{'model_loss': tensor(...), 'noise_loss': tensor(...), 'composite_loss': tensor(...)}
>>> losses["composite_loss"].backward()
Alphaless
>>> stainedglass_loss = model1.noise_loss_wrapper(criterion, alpha=None)
>>> losses = stainedglass_loss(model1(input), labels)
>>> losses
{'model_loss': tensor(...), 'composite_loss': tensor(...), 'noise_loss': tensor(...), 'alpha (std_estimator.module.weight)': tensor(...), 'scaling factor (std_estimator.module.weight)': tensor(...)}
>>> losses["composite_loss"].backward()
>>> stainedglass_loss = model2.noise_loss_wrapper(criterion, alpha=None)
>>> losses = stainedglass_loss(model1(input), labels)
>>> losses
{'model_loss': tensor(...), 'composite_loss': tensor(...), 'noise_loss': tensor(...)}
>>> losses["composite_loss"].backward()
Alphaless with AMP
>>> import torch.cuda.amp
>>> grad_scaler = torch.cuda.amp.GradScaler()
>>> stainedglass_loss = model1.noise_loss_wrapper(
... criterion, alpha=None, grad_scaler=grad_scaler
... )
>>> losses = stainedglass_loss(model1(input), labels)
>>> losses
{'model_loss': tensor(...), 'composite_loss': tensor(...), 'noise_loss': tensor(...), 'alpha (std_estimator.module.weight)': tensor(...), 'scaling factor (std_estimator.module.weight)': tensor(...)}
>>> losses["composite_loss"].backward()
>>> stainedglass_loss = model2.noise_loss_wrapper(
... criterion, alpha=None, grad_scaler=grad_scaler
... )
>>> losses = stainedglass_loss(model1(input), labels)
>>> losses
{'model_loss': tensor(...), 'composite_loss': tensor(...), 'noise_loss': tensor(...)}
>>> losses["composite_loss"].backward()
Changed in version 0.76.1: Added `composite_loss` key to the returned losses dictionary when specifying `alpha=None` to maintain a consistent interface between alpha and alphaless training.
NoisyModelOutput
dataclass
¶
Bases: SGModelOutput[T]
The output of NoisyModel.forward()
.
__init_subclass__
¶
Register subclasses as pytree nodes.
This is necessary to synchronize gradients when using torch.nn.parallel.DistributedDataParallel(static_graph=True)
with modules
that output ModelOutput
subclasses.
See: https://github.com/pytorch/pytorch/issues/106690.
to_tuple
¶
Convert self to a tuple containing all the attributes/keys that are not None
.
Returns:
Type | Description |
---|---|
tuple[Any, ...]
|
A tuple of all attributes/keys that are not |
append_noise_loss_wrapper
¶
append_noise_loss_wrapper(criterion: Callable[Concatenate[T, CriterionP], Tensor | dict[str, Tensor]]) -> Callable[Concatenate[NoisyModelOutput[T], CriterionP], dict[str, torch.Tensor]]
Wrap a loss function to accept an NoisyModelOutput
as its first argument.
Note
criterion
must either return a torch.Tensor or a dict
containing torch.Tensor and must necessarily include the key
'model_loss'.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
criterion |
Callable[Concatenate[T, CriterionP], Tensor | dict[str, Tensor]]
|
The loss function to wrap. |
required |
Returns:
Type | Description |
---|---|
Callable[Concatenate[NoisyModelOutput[T], CriterionP], dict[str, torch.Tensor]]
|
A function that accepts a |
Callable[Concatenate[NoisyModelOutput[T], CriterionP], dict[str, torch.Tensor]]
|
function and adds the |