Skip to content

patch_cloak

PatchCloakNoiseLayer

Bases: BaseNoiseLayer[Conv2d, CloakStandardDeviationParameterization, Optional[BatchwiseChannelwisePatchwisePercentMasker]]

Applies an input-dependent, additive, non-overlapping, convolutional stochastic transformation.

input_shape property

input_shape: tuple[int, ...]

The shape of the expected input including its batch dimension.

mask property writable

mask: Tensor | None

The mask to apply calculated from parameters of the stochastic transformation computed during the most recent call to forward.

mean property writable

mean: Tensor

The means of the stochastic transformation computed during the most recent call to forward.

patch_size property

patch_size: tuple[int, int]

The size of the patches to segment the input into.

std property writable

std: Tensor

The standard deviations of the stochastic transformation computed during the most recent call to forward.

__call__

__call__(input: Tensor, noise_mask: Tensor | None = None, **kwargs: Any) -> NoiseLayerOutput

Stochastically transform the input.

Parameters:

Name Type Description Default
input Tensor

The input to transform.

required
noise_mask Tensor | None

An optional mask that selects the elements of input to transform. Where the mask is False, the original input value is returned. Also used to select the elements of the sampled standard deviations to use to mask the input. If None, the entire input is transformed.

None
**kwargs Any

Additional keyword arguments to the estimator modules.

required

__getstate__

__getstate__() -> dict[str, Any]

Prepare a serializable copy of self.__dict__.

__init__

__init__(input_shape: tuple[int, ...], patch_size: int | tuple[int, int], scale: tuple[float, float] = (0.0001, 2.0), shallow: float = 1.0, percent_to_mask: float | Tensor | None = None, value_range: tuple[float | None, float | None] | None = None, padding_mode: Literal['constant', 'reflect', 'replicate', 'circular'] = 'constant', padding_value: float = 0.0, learn_locs_weights: bool = True, freeze_std_estimator: bool = True, seed: int | None = None) -> None

Construct a Stained Glass Transform layer that generates stochastic transformations over patches of the input images.

Parameters:

Name Type Description Default
input_shape tuple[int, ...]

Shape of given inputs. The first dimension may be -1, meaning variable batch size.

required
patch_size int | tuple[int, int]

Size of the patches to segment the input into. If an integer is given, a square patch is used.

required
scale tuple[float, float]

Minimum and maximum values of the range of standard deviations of the generated stochastic transformation.

(0.0001, 2.0)
shallow float

A temperature-like parameter which controls the spread of the parameterization function. Controls both the magnitude of parameterized standard deviations and their rate of change with respect to rhos.

1.0
percent_to_mask float | Tensor | None

The percentage of the outputs to mask per patch.

None
value_range tuple[float | None, float | None] | None

Minimum and maximum values of the range to clamp the output into.

None
padding_mode Literal['constant', 'reflect', 'replicate', 'circular']

Type of padding. One of: constant, reflect, replicate, or circular. Defaults to constant.

'constant'
padding_value float

Fill value for constant padding.

0.0
learn_locs_weights bool

Whether to learn the weight parameters for the locs estimator. If True, only the weights will be learned, and the bias remains constant, otherwise weights are initialized to zero and only the bias is learned.

True
freeze_std_estimator bool

Whether to freeze the weight parameters for the std estimator. If False, this estimator will be trained simultaneously with masking and the locs estimator parameters.

True
seed int | None

Seed for the random number generator used to generate the stochastic transformation. If None, the global RNG state is used.

None
Note

For estimators where we train the weights, we freeze their biases. We suspect that if both the biases and weights are trained together, the biases will converge faster than the weights, causing the weights to be trivial. This has not been verified experimentally. Our choices for initialization values and conditions subject to change in light of experimental evidence, and you are encouraged to challenge and improve our understanding of the effects of these choices.

__init_subclass__

__init_subclass__() -> None

Set the default dtype to torch.float32 inside all subclass __init__ methods.

__setstate__

__setstate__(state: dict[str, Any]) -> None

Restore from a serialized copy of self.__dict__.

forward

forward(input: Tensor, noise_mask: Tensor | None = None, **kwargs: Any) -> base.NoiseLayerOutput

Transform the input data.

Parameters:

Name Type Description Default
input Tensor

The input to transform.

required
noise_mask Tensor | None

An optional mask that selects the elements of input to transform. Where the mask is 0, the original input value is returned. Also used to select the elements of the sampled standard deviations to use to mask the input. If None, the entire input is transformed.

None
**kwargs Any

Additional keyword arguments to the estimator modules.

required

Returns:

Type Description
base.NoiseLayerOutput

The transformed input data.

get_applied_transform_components_factory

get_applied_transform_components_factory() -> Callable[[], dict[str, torch.Tensor]]

Create a function that returns the elements of the transform components ('mean' and 'std') applied during the most recent forward pass.

Specifically, the applied elements are those selected by the noise mask (if supplied) and standard deviation mask (if std_estimator.masker is not None). If no masks are used, all elements are returned.

The applied transform components are returned flattened.

This function is intended to be used to log histograms of the transform components.

Returns:

Type Description
Callable[[], dict[str, torch.Tensor]]

A function that returns the the elements of the transform components applied during the most recent forward pass.

Examples:

>>> from torch import nn
>>> from stainedglass_core import model as sg_model, noise_layer as sg_noise_layer
>>> base_model = nn.Linear(20, 2)
>>> noisy_model = sg_model.NoisyModel(
...     sg_noise_layer.CloakNoiseLayer1,
...     base_model,
...     input_shape=(-1, 20),
... )
>>> get_applied_transform_components = (
...     noisy_model.noise_layer.get_applied_transform_components_factory()
... )
>>> input = torch.ones(1, 20)
>>> noise_mask = torch.tensor(5 * [False] + 15 * [True])
>>> output = base_model(input, noise_mask=noise_mask)
>>> applied_transform_components = get_applied_transform_components()
>>> applied_transform_components
{'mean': tensor(...), 'std': tensor(...)}
>>> {
...     component_name: component.shape
...     for component_name, component in applied_transform_components.items()
... }
{'mean': torch.Size([15]), 'std': torch.Size([15])}

get_transformed_output_factory

get_transformed_output_factory() -> Callable[[], torch.Tensor]

Create a function that returns the transformed output from the most recent forward pass.

If super batching is active, only the transformed half of the super batch output is returned.

Returns:

Type Description
Callable[[], torch.Tensor]

A function that returns the transformed output from the most recent forward pass.

Examples:

>>> from stainedglass_core import noise_layer as sg_noise_layer
>>> noise_layer = sg_noise_layer.CloakNoiseLayer1(input_shape=(-1, 3, 32, 32))
>>> get_transformed_output = noise_layer.get_transformed_output_factory()
>>> input = torch.ones(2, 3, 32, 32)
>>> output = noise_layer(input)
>>> transformed_output = get_transformed_output()
>>> assert output.output.equal(transformed_output)

initial_seed

initial_seed() -> int

Return the initial seed of the CPU device's random number generator.

manual_seed

manual_seed(seed: int) -> None

Seed each of the random number generators.

Parameters:

Name Type Description Default
seed int

The seed to set.

required

seed

seed() -> None

Seed each of the random number generators using a non-deterministic random number.

PatchCloakNoiseLayer1

Bases: PatchCloakNoiseLayer

Input-dependent, additive, vision Stained Glass Transform layer that segments input images into patches and generates a patch-wise stochastic transformation.

Note

For maximum privacy preservation, Stained Glass Patch Transform Step 1 should only be used to pre-train a Stained Glass Transform Patch Step 2 (see PatchCloakNoiseLayer1_NoClip). First training a Step 1, then fine-tuning that transform with step 2 is a common recipe.

input_shape property

input_shape: tuple[int, ...]

The shape of the expected input including its batch dimension.

mask property writable

mask: Tensor | None

The mask to apply calculated from parameters of the stochastic transformation computed during the most recent call to forward.

mean property writable

mean: Tensor

The means of the stochastic transformation computed during the most recent call to forward.

patch_size property

patch_size: tuple[int, int]

The size of the patches to segment the input into.

std property writable

std: Tensor

The standard deviations of the stochastic transformation computed during the most recent call to forward.

__call__

__call__(input: Tensor, noise_mask: Tensor | None = None, **kwargs: Any) -> NoiseLayerOutput

Stochastically transform the input.

Parameters:

Name Type Description Default
input Tensor

The input to transform.

required
noise_mask Tensor | None

An optional mask that selects the elements of input to transform. Where the mask is False, the original input value is returned. Also used to select the elements of the sampled standard deviations to use to mask the input. If None, the entire input is transformed.

None
**kwargs Any

Additional keyword arguments to the estimator modules.

required

__getstate__

__getstate__() -> dict[str, Any]

Prepare a serializable copy of self.__dict__.

__init__

__init__(input_shape: tuple[int, ...], patch_size: int | tuple[int, int], scale: tuple[float, float], shallow: float = 1.0, padding_mode: Literal['constant', 'reflect', 'replicate', 'circular'] = 'constant', padding_value: float = 0.0, learn_locs_weights: bool = True, seed: int | None = None) -> None

Construct a Stained Glass Transform layer that generates stochastic transformations over patches of the input images.

Parameters:

Name Type Description Default
input_shape tuple[int, ...]

The shape of the input tensor.

required
patch_size int | tuple[int, int]

The size of the patches over which the stochastic transformation is estimated.

required
scale tuple[float, float]

The range of standard deviations of the stochastic transformation.

required
shallow float

A temperature-like parameter which controls the spread of the parameterization function. Controls both the magnitude of parameterized standard deviations and their rate of change with respect to rhos.

1.0
padding_mode Literal['constant', 'reflect', 'replicate', 'circular']

The padding mode to use when extracting patches.

'constant'
padding_value float

The value to use when padding the input.

0.0
learn_locs_weights bool

Whether to only learn the locs estimator weights or else to only learn the locs estimator bias.

True
seed int | None

Seed for the random number generator used to generate the stochastic transformation. If None, the global RNG state is used.

None

__init_subclass__

__init_subclass__() -> None

Set the default dtype to torch.float32 inside all subclass __init__ methods.

__setstate__

__setstate__(state: dict[str, Any]) -> None

Restore from a serialized copy of self.__dict__.

forward

forward(input: Tensor, noise_mask: Tensor | None = None, **kwargs: Any) -> base.NoiseLayerOutput

Transform the input data.

Parameters:

Name Type Description Default
input Tensor

The input to transform.

required
noise_mask Tensor | None

An optional mask that selects the elements of input to transform. Where the mask is 0, the original input value is returned. Also used to select the elements of the sampled standard deviations to use to mask the input. If None, the entire input is transformed.

None
**kwargs Any

Additional keyword arguments to the estimator modules.

required

Returns:

Type Description
base.NoiseLayerOutput

The transformed input data.

get_applied_transform_components_factory

get_applied_transform_components_factory() -> Callable[[], dict[str, torch.Tensor]]

Create a function that returns the elements of the transform components ('mean' and 'std') applied during the most recent forward pass.

Specifically, the applied elements are those selected by the noise mask (if supplied) and standard deviation mask (if std_estimator.masker is not None). If no masks are used, all elements are returned.

The applied transform components are returned flattened.

This function is intended to be used to log histograms of the transform components.

Returns:

Type Description
Callable[[], dict[str, torch.Tensor]]

A function that returns the the elements of the transform components applied during the most recent forward pass.

Examples:

>>> from torch import nn
>>> from stainedglass_core import model as sg_model, noise_layer as sg_noise_layer
>>> base_model = nn.Linear(20, 2)
>>> noisy_model = sg_model.NoisyModel(
...     sg_noise_layer.CloakNoiseLayer1,
...     base_model,
...     input_shape=(-1, 20),
... )
>>> get_applied_transform_components = (
...     noisy_model.noise_layer.get_applied_transform_components_factory()
... )
>>> input = torch.ones(1, 20)
>>> noise_mask = torch.tensor(5 * [False] + 15 * [True])
>>> output = base_model(input, noise_mask=noise_mask)
>>> applied_transform_components = get_applied_transform_components()
>>> applied_transform_components
{'mean': tensor(...), 'std': tensor(...)}
>>> {
...     component_name: component.shape
...     for component_name, component in applied_transform_components.items()
... }
{'mean': torch.Size([15]), 'std': torch.Size([15])}

get_transformed_output_factory

get_transformed_output_factory() -> Callable[[], torch.Tensor]

Create a function that returns the transformed output from the most recent forward pass.

If super batching is active, only the transformed half of the super batch output is returned.

Returns:

Type Description
Callable[[], torch.Tensor]

A function that returns the transformed output from the most recent forward pass.

Examples:

>>> from stainedglass_core import noise_layer as sg_noise_layer
>>> noise_layer = sg_noise_layer.CloakNoiseLayer1(input_shape=(-1, 3, 32, 32))
>>> get_transformed_output = noise_layer.get_transformed_output_factory()
>>> input = torch.ones(2, 3, 32, 32)
>>> output = noise_layer(input)
>>> transformed_output = get_transformed_output()
>>> assert output.output.equal(transformed_output)

initial_seed

initial_seed() -> int

Return the initial seed of the CPU device's random number generator.

manual_seed

manual_seed(seed: int) -> None

Seed each of the random number generators.

Parameters:

Name Type Description Default
seed int

The seed to set.

required

seed

seed() -> None

Seed each of the random number generators using a non-deterministic random number.

PatchCloakNoiseLayer2

Bases: PatchCloakNoiseLayer

Input-dependent, additive, vision Stained Glass Transform layer that segments input images into patches and generates a patch-wise stochastic transformation with masking and clipping. Use after training a PatchCloakNoiseLayer1.

Note

For maximum privacy preservation, Stained Glass Transform Patch Step 2 should be pre-trained from a Stained Glass Transform Patch Step 1.

input_shape property

input_shape: tuple[int, ...]

The shape of the expected input including its batch dimension.

mask property writable

mask: Tensor | None

The mask to apply calculated from parameters of the stochastic transformation computed during the most recent call to forward.

mean property writable

mean: Tensor

The means of the stochastic transformation computed during the most recent call to forward.

patch_size property

patch_size: tuple[int, int]

The size of the patches to segment the input into.

std property writable

std: Tensor

The standard deviations of the stochastic transformation computed during the most recent call to forward.

__call__

__call__(input: Tensor, noise_mask: Tensor | None = None, **kwargs: Any) -> NoiseLayerOutput

Stochastically transform the input.

Parameters:

Name Type Description Default
input Tensor

The input to transform.

required
noise_mask Tensor | None

An optional mask that selects the elements of input to transform. Where the mask is False, the original input value is returned. Also used to select the elements of the sampled standard deviations to use to mask the input. If None, the entire input is transformed.

None
**kwargs Any

Additional keyword arguments to the estimator modules.

required

__getstate__

__getstate__() -> dict[str, Any]

Prepare a serializable copy of self.__dict__.

__init__

__init__(input_shape: tuple[int, ...], patch_size: int | tuple[int, int], scale: tuple[float, float], percent_to_mask: float, shallow: float = 1.0, value_range: tuple[float | None, float | None] = (-1.0, 1.0), padding_mode: Literal['constant', 'reflect', 'replicate', 'circular'] = 'constant', padding_value: float = 0.0, learn_locs_weights: bool = True, freeze_std_estimator: bool = True, seed: int | None = None) -> None

Create Stained Glass Transform to generate a stochastic transformation over patches of the input images.

Parameters:

Name Type Description Default
input_shape tuple[int, ...]

Shape of given inputs. The first dimension may be -1, meaning variable batch size.

required
patch_size int | tuple[int, int]

Size of the patches to segment the input into. If an integer is given, a square patch is used.

required
scale tuple[float, float]

Minimum and maximum values of the range of standard deviations of the generated stochastic transformation.

required
percent_to_mask float

The percentage of the outputs to mask per patch.

required
shallow float

A temperature-like parameter which controls the spread of the parameterization function. Controls both the magnitude of parameterized standard deviations and their rate of change with respect to rhos.

1.0
value_range tuple[float | None, float | None]

Minimum and maximum values of the range to clamp the output into.

(-1.0, 1.0)
padding_mode Literal['constant', 'reflect', 'replicate', 'circular']

Type of padding. One of: constant, reflect, replicate, or circular. Defaults to constant.

'constant'
padding_value float

Fill value for constant padding.

0.0
learn_locs_weights bool

Whether to learn the weight parameters for the locs estimator. If True, only the weights will be learned, and the bias remains constant, otherwise weights are initialized to zero and only the bias is learned.

True
freeze_std_estimator bool

Whether to freeze the weight parameters for the std estimator. If False, this estimator will be trained simultaneously with masking and the locs estimator parameters.

True
seed int | None

Seed for the random number generator used to generate the stochastic transformation. If None, the global RNG state is used.

None

Changed in version 0.10.0: `threshold` and `percent_threshold` parameters were removed in favor of `percent_to_mask`

__init_subclass__

__init_subclass__() -> None

Set the default dtype to torch.float32 inside all subclass __init__ methods.

__setstate__

__setstate__(state: dict[str, Any]) -> None

Restore from a serialized copy of self.__dict__.

forward

forward(input: Tensor, noise_mask: Tensor | None = None, **kwargs: Any) -> base.NoiseLayerOutput

Transform the input data.

Parameters:

Name Type Description Default
input Tensor

The input to transform.

required
noise_mask Tensor | None

An optional mask that selects the elements of input to transform. Where the mask is 0, the original input value is returned. Also used to select the elements of the sampled standard deviations to use to mask the input. If None, the entire input is transformed.

None
**kwargs Any

Additional keyword arguments to the estimator modules.

required

Returns:

Type Description
base.NoiseLayerOutput

The transformed input data.

get_applied_transform_components_factory

get_applied_transform_components_factory() -> Callable[[], dict[str, torch.Tensor]]

Create a function that returns the elements of the transform components ('mean' and 'std') applied during the most recent forward pass.

Specifically, the applied elements are those selected by the noise mask (if supplied) and standard deviation mask (if std_estimator.masker is not None). If no masks are used, all elements are returned.

The applied transform components are returned flattened.

This function is intended to be used to log histograms of the transform components.

Returns:

Type Description
Callable[[], dict[str, torch.Tensor]]

A function that returns the the elements of the transform components applied during the most recent forward pass.

Examples:

>>> from torch import nn
>>> from stainedglass_core import model as sg_model, noise_layer as sg_noise_layer
>>> base_model = nn.Linear(20, 2)
>>> noisy_model = sg_model.NoisyModel(
...     sg_noise_layer.CloakNoiseLayer1,
...     base_model,
...     input_shape=(-1, 20),
... )
>>> get_applied_transform_components = (
...     noisy_model.noise_layer.get_applied_transform_components_factory()
... )
>>> input = torch.ones(1, 20)
>>> noise_mask = torch.tensor(5 * [False] + 15 * [True])
>>> output = base_model(input, noise_mask=noise_mask)
>>> applied_transform_components = get_applied_transform_components()
>>> applied_transform_components
{'mean': tensor(...), 'std': tensor(...)}
>>> {
...     component_name: component.shape
...     for component_name, component in applied_transform_components.items()
... }
{'mean': torch.Size([15]), 'std': torch.Size([15])}

get_transformed_output_factory

get_transformed_output_factory() -> Callable[[], torch.Tensor]

Create a function that returns the transformed output from the most recent forward pass.

If super batching is active, only the transformed half of the super batch output is returned.

Returns:

Type Description
Callable[[], torch.Tensor]

A function that returns the transformed output from the most recent forward pass.

Examples:

>>> from stainedglass_core import noise_layer as sg_noise_layer
>>> noise_layer = sg_noise_layer.CloakNoiseLayer1(input_shape=(-1, 3, 32, 32))
>>> get_transformed_output = noise_layer.get_transformed_output_factory()
>>> input = torch.ones(2, 3, 32, 32)
>>> output = noise_layer(input)
>>> transformed_output = get_transformed_output()
>>> assert output.output.equal(transformed_output)

initial_seed

initial_seed() -> int

Return the initial seed of the CPU device's random number generator.

manual_seed

manual_seed(seed: int) -> None

Seed each of the random number generators.

Parameters:

Name Type Description Default
seed int

The seed to set.

required

seed

seed() -> None

Seed each of the random number generators using a non-deterministic random number.

PatchCloakNoiseLayer2_NoClip

Bases: PatchCloakNoiseLayer

Input-dependent, additive, vision Stained Glass Transform layer that segments input images into patches and generates a patch-wise stochastic transformation with masking. Use after training a PatchCloakNoiseLayer1.

Note

For maximum privacy preservation, Stained Glass Transform Patch Step 2 should be pre-trained from a Stained Glass Transform Patch Step 1.

input_shape property

input_shape: tuple[int, ...]

The shape of the expected input including its batch dimension.

mask property writable

mask: Tensor | None

The mask to apply calculated from parameters of the stochastic transformation computed during the most recent call to forward.

mean property writable

mean: Tensor

The means of the stochastic transformation computed during the most recent call to forward.

patch_size property

patch_size: tuple[int, int]

The size of the patches to segment the input into.

std property writable

std: Tensor

The standard deviations of the stochastic transformation computed during the most recent call to forward.

__call__

__call__(input: Tensor, noise_mask: Tensor | None = None, **kwargs: Any) -> NoiseLayerOutput

Stochastically transform the input.

Parameters:

Name Type Description Default
input Tensor

The input to transform.

required
noise_mask Tensor | None

An optional mask that selects the elements of input to transform. Where the mask is False, the original input value is returned. Also used to select the elements of the sampled standard deviations to use to mask the input. If None, the entire input is transformed.

None
**kwargs Any

Additional keyword arguments to the estimator modules.

required

__getstate__

__getstate__() -> dict[str, Any]

Prepare a serializable copy of self.__dict__.

__init__

__init__(input_shape: tuple[int, ...], patch_size: int | tuple[int, int], scale: tuple[float, float], percent_to_mask: float, shallow: float = 1.0, padding_mode: Literal['constant', 'reflect', 'replicate', 'circular'] = 'constant', padding_value: float = 0.0, learn_locs_weights: bool = True, freeze_std_estimator: bool = True, seed: int | None = None) -> None

Create Stained Glass Transform to generate a stochastic transformation over patches of the input images.

Parameters:

Name Type Description Default
input_shape tuple[int, ...]

Shape of given inputs. The first dimension may be -1, meaning variable batch size.

required
patch_size int | tuple[int, int]

Size of the patches to segment the input into. If an integer is given, a square patch is used.

required
scale tuple[float, float]

Minimum and maximum values of the range of standard deviations of the generated stochastic transformation.

required
percent_to_mask float

The percentage of the outputs to mask per patch.

required
shallow float

A temperature-like parameter which controls the spread of the parameterization function. Controls both the magnitude of parameterized standard deviations and their rate of change with respect to rhos.

1.0
padding_mode Literal['constant', 'reflect', 'replicate', 'circular']

Type of padding. One of: constant, reflect, replicate, or circular. Defaults to constant.

'constant'
padding_value float

Fill value for constant padding.

0.0
learn_locs_weights bool

Whether to learn the weight parameters for the locs estimator. If True, only the weights will be learned, and the bias remains constant, otherwise weights are initialized to zero and only the bias is learned.

True
freeze_std_estimator bool

Whether to freeze the weight parameters for the std estimator. If True, this estimator will be trained simultaneously with masking and the locs estimator parameters.

True
seed int | None

Seed for the random number generator used to generate the stochastic transformation. If None, the global RNG state is used.

None

Changed in version 0.10.0: `threshold` and `percent_threshold` parameters were removed in favor of `percent_to_mask`

__init_subclass__

__init_subclass__() -> None

Set the default dtype to torch.float32 inside all subclass __init__ methods.

__setstate__

__setstate__(state: dict[str, Any]) -> None

Restore from a serialized copy of self.__dict__.

forward

forward(input: Tensor, noise_mask: Tensor | None = None, **kwargs: Any) -> base.NoiseLayerOutput

Transform the input data.

Parameters:

Name Type Description Default
input Tensor

The input to transform.

required
noise_mask Tensor | None

An optional mask that selects the elements of input to transform. Where the mask is 0, the original input value is returned. Also used to select the elements of the sampled standard deviations to use to mask the input. If None, the entire input is transformed.

None
**kwargs Any

Additional keyword arguments to the estimator modules.

required

Returns:

Type Description
base.NoiseLayerOutput

The transformed input data.

get_applied_transform_components_factory

get_applied_transform_components_factory() -> Callable[[], dict[str, torch.Tensor]]

Create a function that returns the elements of the transform components ('mean' and 'std') applied during the most recent forward pass.

Specifically, the applied elements are those selected by the noise mask (if supplied) and standard deviation mask (if std_estimator.masker is not None). If no masks are used, all elements are returned.

The applied transform components are returned flattened.

This function is intended to be used to log histograms of the transform components.

Returns:

Type Description
Callable[[], dict[str, torch.Tensor]]

A function that returns the the elements of the transform components applied during the most recent forward pass.

Examples:

>>> from torch import nn
>>> from stainedglass_core import model as sg_model, noise_layer as sg_noise_layer
>>> base_model = nn.Linear(20, 2)
>>> noisy_model = sg_model.NoisyModel(
...     sg_noise_layer.CloakNoiseLayer1,
...     base_model,
...     input_shape=(-1, 20),
... )
>>> get_applied_transform_components = (
...     noisy_model.noise_layer.get_applied_transform_components_factory()
... )
>>> input = torch.ones(1, 20)
>>> noise_mask = torch.tensor(5 * [False] + 15 * [True])
>>> output = base_model(input, noise_mask=noise_mask)
>>> applied_transform_components = get_applied_transform_components()
>>> applied_transform_components
{'mean': tensor(...), 'std': tensor(...)}
>>> {
...     component_name: component.shape
...     for component_name, component in applied_transform_components.items()
... }
{'mean': torch.Size([15]), 'std': torch.Size([15])}

get_transformed_output_factory

get_transformed_output_factory() -> Callable[[], torch.Tensor]

Create a function that returns the transformed output from the most recent forward pass.

If super batching is active, only the transformed half of the super batch output is returned.

Returns:

Type Description
Callable[[], torch.Tensor]

A function that returns the transformed output from the most recent forward pass.

Examples:

>>> from stainedglass_core import noise_layer as sg_noise_layer
>>> noise_layer = sg_noise_layer.CloakNoiseLayer1(input_shape=(-1, 3, 32, 32))
>>> get_transformed_output = noise_layer.get_transformed_output_factory()
>>> input = torch.ones(2, 3, 32, 32)
>>> output = noise_layer(input)
>>> transformed_output = get_transformed_output()
>>> assert output.output.equal(transformed_output)

initial_seed

initial_seed() -> int

Return the initial seed of the CPU device's random number generator.

manual_seed

manual_seed(seed: int) -> None

Seed each of the random number generators.

Parameters:

Name Type Description Default
seed int

The seed to set.

required

seed

seed() -> None

Seed each of the random number generators using a non-deterministic random number.