cloak_noise
CloakNoiseLayer
¶
Bases: BaseNoiseLayer[ParameterWrapper, CloakStandardDeviationParameterization, Optional[PercentMasker]]
Stained Glass Transform that creates a stochastic re-representation of the input data.
Inspired by the Cloak algorithm defined in the paper: Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy.
Warning
The directly learned locs
and rhos
used by this class are prone to vanishing when trained with weight decay regularization.
To avoid this, ensure that optimizer parameter group(s) containing locs
or rhos
are configured with weight_decay=0.0
.
input_shape
property
¶
The shape of the expected input including its batch dimension.
mask
property
writable
¶
mask: Tensor | None
The mask to apply calculated from parameters of the stochastic transformation computed during the most recent call to forward.
mean
property
writable
¶
mean: Tensor
The means of the stochastic transformation computed during the most recent call to forward.
std
property
writable
¶
std: Tensor
The standard deviations of the stochastic transformation computed during the most recent call to forward.
__call__
¶
Stochastically transform the input.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input |
Tensor
|
The input to transform. |
required |
noise_mask |
Tensor | None
|
An optional mask that selects the elements of |
None
|
**kwargs |
Any
|
Additional keyword arguments to the estimator modules. |
required |
__init__
¶
__init__(input_shape: tuple[int, ...], scale: tuple[float, float] | Tensor = (0.0001, 2.0), shallow: float | Tensor = 1.0, percent_to_mask: float | Tensor | None = None, value_range: tuple[float | None, float | None] | None = None, locs_requires_grad: bool = True, rhos_requires_grad: bool = True, rhos_init: float = -4.0, seed: int | None = None) -> None
Construct a CloakNoiseLayer
with the given parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_shape |
tuple[int, ...]
|
The input shape of the layer. |
required |
scale |
tuple[float, float] | Tensor
|
Used to set bound on the min and max standard deviation of the stochastic transformation. |
(0.0001, 2.0)
|
shallow |
float | Tensor
|
A temperature-like parameter which controls the spread of the parameterization function. Controls both the magnitude of parameterized standard deviations and their rate of change with respect to rhos. |
1.0
|
percent_to_mask |
float | Tensor | None
|
The percentage of the input to mask. |
None
|
value_range |
tuple[float | None, float | None] | None
|
Minimum and maximum values of the range to clamp the output into. |
None
|
locs_requires_grad |
bool
|
Whether the locs parameters (related to the means of the transform) have their gradients tracked. |
True
|
rhos_requires_grad |
bool
|
Whether the rhos parameters (related to the standard deviations of the transform) have their gradients tracked. |
True
|
rhos_init |
float
|
The initial values for the rhos. |
-4.0
|
seed |
int | None
|
Seed for the random number generator used to generate the stochastic transformation. If |
None
|
__init_subclass__
¶
Set the default dtype to torch.float32
inside all subclass __init__
methods.
__setstate__
¶
Restore from a serialized copy of self.__dict__
.
forward
¶
Transform the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input |
Tensor
|
The input to transform. |
required |
noise_mask |
Tensor | None
|
An optional mask that selects the elements of |
None
|
**kwargs |
Any
|
Additional keyword arguments to the estimator modules. |
required |
Returns:
Type | Description |
---|---|
base.NoiseLayerOutput
|
The transformed input data. |
get_applied_transform_components_factory
¶
Create a function that returns the elements of the transform components ('mean'
and 'std'
) applied during the most recent
forward pass.
Specifically, the applied elements are those selected by the noise mask (if supplied) and standard deviation mask (if
std_estimator.masker is not None
). If no masks are used, all elements are returned.
The applied transform components are returned flattened.
This function is intended to be used to log histograms of the transform components.
Returns:
Type | Description |
---|---|
Callable[[], dict[str, torch.Tensor]]
|
A function that returns the the elements of the transform components applied during the most recent forward pass. |
Examples:
>>> from torch import nn
>>> from stainedglass_core import model as sg_model, noise_layer as sg_noise_layer
>>> base_model = nn.Linear(20, 2)
>>> noisy_model = sg_model.NoisyModel(
... sg_noise_layer.CloakNoiseLayer1,
... base_model,
... input_shape=(-1, 20),
... )
>>> get_applied_transform_components = (
... noisy_model.noise_layer.get_applied_transform_components_factory()
... )
>>> input = torch.ones(1, 20)
>>> noise_mask = torch.tensor(5 * [False] + 15 * [True])
>>> output = base_model(input, noise_mask=noise_mask)
>>> applied_transform_components = get_applied_transform_components()
>>> applied_transform_components
{'mean': tensor(...), 'std': tensor(...)}
>>> {
... component_name: component.shape
... for component_name, component in applied_transform_components.items()
... }
{'mean': torch.Size([15]), 'std': torch.Size([15])}
get_transformed_output_factory
¶
Create a function that returns the transformed output from the most recent forward pass.
If super batching is active, only the transformed half of the super batch output is returned.
Returns:
Type | Description |
---|---|
Callable[[], torch.Tensor]
|
A function that returns the transformed output from the most recent forward pass. |
Examples:
>>> from stainedglass_core import noise_layer as sg_noise_layer
>>> noise_layer = sg_noise_layer.CloakNoiseLayer1(input_shape=(-1, 3, 32, 32))
>>> get_transformed_output = noise_layer.get_transformed_output_factory()
>>> input = torch.ones(2, 3, 32, 32)
>>> output = noise_layer(input)
>>> transformed_output = get_transformed_output()
>>> assert output.output.equal(transformed_output)
initial_seed
¶
Return the initial seed of the CPU device's random number generator.
manual_seed
¶
manual_seed(seed: int) -> None
Seed each of the random number generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
seed |
int
|
The seed to set. |
required |
seed
¶
Seed each of the random number generators using a non-deterministic random number.
CloakNoiseLayer1
¶
Bases: CloakNoiseLayer
Stained Glass Transform that applies a stochastic re-representation of the input data without masking.
Inspired by the Cloak Step 1 algorithm defined in the paper: Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy
Warning
The directly learned locs
and rhos
used by this class are prone to vanishing when trained with weight decay regularization.
To avoid this, ensure that optimizer parameter group(s) containing locs
or rhos
are configured with weight_decay=0.0
.
Note
For maximum privacy preservation, Stained Glass Transform Step 1 should only be used to pre-train a Stained Glass Transform Step 2
(see CloakNoiseLayer2
or CloakNoiseLayer2_NoClip
). First training a Step 1, then fine-tuning that transform with step 2 is
a common recipe.
For a more convenient type Stained Glass Transform that requires only one step of training, see CloakNoiseLayerOneShot
.
Note
In almost all cases, rhos_requires_grad
should be True
while training CloakNoiseLayer1
.
input_shape
property
¶
The shape of the expected input including its batch dimension.
mask
property
writable
¶
mask: Tensor | None
The mask to apply calculated from parameters of the stochastic transformation computed during the most recent call to forward.
mean
property
writable
¶
mean: Tensor
The means of the stochastic transformation computed during the most recent call to forward.
std
property
writable
¶
std: Tensor
The standard deviations of the stochastic transformation computed during the most recent call to forward.
__call__
¶
Stochastically transform the input.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input |
Tensor
|
The input to transform. |
required |
noise_mask |
Tensor | None
|
An optional mask that selects the elements of |
None
|
**kwargs |
Any
|
Additional keyword arguments to the estimator modules. |
required |
__init__
¶
__init__(input_shape: tuple[int, ...], scale: tuple[float, float] | Tensor = (0.0001, 2.0), shallow: float | Tensor = 1.0, locs: bool = True, rhos: bool = True, rhos_init: float = -4.0, seed: int | None = None) -> None
Construct a CloakNoiseLayer1
with the given parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_shape |
tuple[int, ...]
|
The input shape of the layer. |
required |
scale |
tuple[float, float] | Tensor
|
Used to set bound on the min and max standard deviation of the stochastic transformation. |
(0.0001, 2.0)
|
shallow |
float | Tensor
|
A temperature-like parameter which controls the spread of the parameterization function. Controls both the magnitude of parameterized standard deviations and their rate of change with respect to rhos. |
1.0
|
locs |
bool
|
Whether the locs parameters (related to the means of the transform) have their gradients tracked. |
True
|
rhos |
bool
|
Whether the rhos parameters (related to the standard deviations of the transform) have their gradients tracked. Usually True. |
True
|
rhos_init |
float
|
The initial values for the rhos. |
-4.0
|
seed |
int | None
|
Seed for the random number generator used to generate the stochastic transformation. If |
None
|
__init_subclass__
¶
Set the default dtype to torch.float32
inside all subclass __init__
methods.
__setstate__
¶
Restore from a serialized copy of self.__dict__
.
forward
¶
Transform the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input |
Tensor
|
The input to transform. |
required |
noise_mask |
Tensor | None
|
An optional mask that selects the elements of |
None
|
**kwargs |
Any
|
Additional keyword arguments to the estimator modules. |
required |
Returns:
Type | Description |
---|---|
base.NoiseLayerOutput
|
The transformed input data. |
get_applied_transform_components_factory
¶
Create a function that returns the elements of the transform components ('mean'
and 'std'
) applied during the most recent
forward pass.
Specifically, the applied elements are those selected by the noise mask (if supplied) and standard deviation mask (if
std_estimator.masker is not None
). If no masks are used, all elements are returned.
The applied transform components are returned flattened.
This function is intended to be used to log histograms of the transform components.
Returns:
Type | Description |
---|---|
Callable[[], dict[str, torch.Tensor]]
|
A function that returns the the elements of the transform components applied during the most recent forward pass. |
Examples:
>>> from torch import nn
>>> from stainedglass_core import model as sg_model, noise_layer as sg_noise_layer
>>> base_model = nn.Linear(20, 2)
>>> noisy_model = sg_model.NoisyModel(
... sg_noise_layer.CloakNoiseLayer1,
... base_model,
... input_shape=(-1, 20),
... )
>>> get_applied_transform_components = (
... noisy_model.noise_layer.get_applied_transform_components_factory()
... )
>>> input = torch.ones(1, 20)
>>> noise_mask = torch.tensor(5 * [False] + 15 * [True])
>>> output = base_model(input, noise_mask=noise_mask)
>>> applied_transform_components = get_applied_transform_components()
>>> applied_transform_components
{'mean': tensor(...), 'std': tensor(...)}
>>> {
... component_name: component.shape
... for component_name, component in applied_transform_components.items()
... }
{'mean': torch.Size([15]), 'std': torch.Size([15])}
get_transformed_output_factory
¶
Create a function that returns the transformed output from the most recent forward pass.
If super batching is active, only the transformed half of the super batch output is returned.
Returns:
Type | Description |
---|---|
Callable[[], torch.Tensor]
|
A function that returns the transformed output from the most recent forward pass. |
Examples:
>>> from stainedglass_core import noise_layer as sg_noise_layer
>>> noise_layer = sg_noise_layer.CloakNoiseLayer1(input_shape=(-1, 3, 32, 32))
>>> get_transformed_output = noise_layer.get_transformed_output_factory()
>>> input = torch.ones(2, 3, 32, 32)
>>> output = noise_layer(input)
>>> transformed_output = get_transformed_output()
>>> assert output.output.equal(transformed_output)
initial_seed
¶
Return the initial seed of the CPU device's random number generator.
manual_seed
¶
manual_seed(seed: int) -> None
Seed each of the random number generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
seed |
int
|
The seed to set. |
required |
seed
¶
Seed each of the random number generators using a non-deterministic random number.
CloakNoiseLayer2
¶
Bases: CloakNoiseLayer
Stained Glass Transform that stochastically re-represents the input data with masking.
Inspired by the Cloak Step 2 algorithm defined in the paper: Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy
Warning
The directly learned locs
and rhos
used by this class are prone to vanishing when trained with weight decay regularization.
To avoid this, ensure that optimizer parameter group(s) containing locs
or rhos
are configured with weight_decay=0.0
.
Note
For maximum privacy preservation, Stained Glass Transform Step 2 should be pre-trained from a Stained Glass Transform Step 1. For a
more convenient type of Stained Glass Transform that requires only one step of training, see CloakNoiseLayerOneShot
.
Note
Masking is done using a static threshold on the learned standard deviation of the stochastic transformation. This threshold is
calculated from percent_to_mask
when loading a pre-trained transform layer. Consequently, continuing to train the stochastic
transformation will not affect masking. For a variant of Cloak Step 2 that recalculates its masking using percent_to_mask
on each
call (i.e. the masking can change during training), see CloakNoiseLayerOneShot
.
input_shape
property
¶
The shape of the expected input including its batch dimension.
mean
property
writable
¶
mean: Tensor
The means of the stochastic transformation computed during the most recent call to forward.
std
property
writable
¶
std: Tensor
The standard deviations of the stochastic transformation computed during the most recent call to forward.
__call__
¶
Stochastically transform the input.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input |
Tensor
|
The input to transform. |
required |
noise_mask |
Tensor | None
|
An optional mask that selects the elements of |
None
|
**kwargs |
Any
|
Additional keyword arguments to the estimator modules. |
required |
__init__
¶
__init__(input_shape: tuple[int, ...], percent_to_mask: float | Tensor, scale: tuple[float, float] | Tensor = (0.0001, 2.0), shallow: float | Tensor = 1.0, value_range: tuple[float | None, float | None] | None = (-1.0, 1.0), seed: int | None = None) -> None
Construct a CloakNoiseLayer2
with the given parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_shape |
tuple[int, ...]
|
The input shape of the layer. |
required |
scale |
tuple[float, float] | Tensor
|
Used to set bound on the min and max standard deviation of the stochastic transformation. |
(0.0001, 2.0)
|
percent_to_mask |
float | Tensor
|
The percentage of the outputs to mask. |
required |
shallow |
float | Tensor
|
A temperature-like parameter which controls the spread of the parameterization function. Controls both the magnitude of parameterized standard deviations and their rate of change with respect to rhos. |
1.0
|
value_range |
tuple[float | None, float | None] | None
|
Minimum and maximum values of the range to clamp the output into. |
(-1.0, 1.0)
|
seed |
int | None
|
Seed for the random number generator used to generate the stochastic transformation. If |
None
|
Note
Specifying percent_to_mask==0.0
with a NoClip
variant of Cloak Step 2 is functionally equivalent to Cloak Step 1, as no
masking occurs.
Note
In training mode, the threshold
buffer is recalculated over the learned standard deviations of the stochastic transformation,
and a new input mask is generated with each forward call. In eval mode, threshold
is static, and the cached mask from the most
recent mask calculation is used.
Raises:
Type | Description |
---|---|
ValueError
|
If |
Changed in version 0.10.0: `threshold` and `percent_threshold` parameters were removed in favor of `percent_to_mask`
__init_subclass__
¶
Set the default dtype to torch.float32
inside all subclass __init__
methods.
__setstate__
¶
Restore from a serialized copy of self.__dict__
.
forward
¶
Transform the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input |
Tensor
|
The input to transform. |
required |
noise_mask |
Tensor | None
|
An optional mask that selects the elements of |
None
|
**kwargs |
Any
|
Additional keyword arguments to the estimator modules. |
required |
Returns:
Type | Description |
---|---|
base.NoiseLayerOutput
|
The transformed input data. |
get_applied_transform_components_factory
¶
Create a function that returns the elements of the transform components ('mean'
and 'std'
) applied during the most recent
forward pass.
Specifically, the applied elements are those selected by the noise mask (if supplied) and standard deviation mask (if
std_estimator.masker is not None
). If no masks are used, all elements are returned.
The applied transform components are returned flattened.
This function is intended to be used to log histograms of the transform components.
Returns:
Type | Description |
---|---|
Callable[[], dict[str, torch.Tensor]]
|
A function that returns the the elements of the transform components applied during the most recent forward pass. |
Examples:
>>> from torch import nn
>>> from stainedglass_core import model as sg_model, noise_layer as sg_noise_layer
>>> base_model = nn.Linear(20, 2)
>>> noisy_model = sg_model.NoisyModel(
... sg_noise_layer.CloakNoiseLayer1,
... base_model,
... input_shape=(-1, 20),
... )
>>> get_applied_transform_components = (
... noisy_model.noise_layer.get_applied_transform_components_factory()
... )
>>> input = torch.ones(1, 20)
>>> noise_mask = torch.tensor(5 * [False] + 15 * [True])
>>> output = base_model(input, noise_mask=noise_mask)
>>> applied_transform_components = get_applied_transform_components()
>>> applied_transform_components
{'mean': tensor(...), 'std': tensor(...)}
>>> {
... component_name: component.shape
... for component_name, component in applied_transform_components.items()
... }
{'mean': torch.Size([15]), 'std': torch.Size([15])}
get_transformed_output_factory
¶
Create a function that returns the transformed output from the most recent forward pass.
If super batching is active, only the transformed half of the super batch output is returned.
Returns:
Type | Description |
---|---|
Callable[[], torch.Tensor]
|
A function that returns the transformed output from the most recent forward pass. |
Examples:
>>> from stainedglass_core import noise_layer as sg_noise_layer
>>> noise_layer = sg_noise_layer.CloakNoiseLayer1(input_shape=(-1, 3, 32, 32))
>>> get_transformed_output = noise_layer.get_transformed_output_factory()
>>> input = torch.ones(2, 3, 32, 32)
>>> output = noise_layer(input)
>>> transformed_output = get_transformed_output()
>>> assert output.output.equal(transformed_output)
initial_seed
¶
Return the initial seed of the CPU device's random number generator.
manual_seed
¶
manual_seed(seed: int) -> None
Seed each of the random number generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
seed |
int
|
The seed to set. |
required |
seed
¶
Seed each of the random number generators using a non-deterministic random number.
CloakNoiseLayer2_NoClip
¶
Bases: CloakNoiseLayer2
Stained Glass Transform that stochastically re-represents the input data with masking but without clipping.
Inspired by the Cloak Step 2 algorithm defined in the paper: Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy
Warning
The directly learned locs
and rhos
used by this class are prone to vanishing when trained with weight decay regularization.
To avoid this, ensure that optimizer parameter group(s) containing locs
or rhos
are configured with weight_decay=0.0
.
Note
For maximum privacy preservation, Stained Glass Transform Step 2 should be pre-trained from a Stained Glass Transform Step 1.
For a more convenient type Stained Glass Transform that requires only one step of training, see CloakNoiseLayerOneShot
.
input_shape
property
¶
The shape of the expected input including its batch dimension.
mean
property
writable
¶
mean: Tensor
The means of the stochastic transformation computed during the most recent call to forward.
std
property
writable
¶
std: Tensor
The standard deviations of the stochastic transformation computed during the most recent call to forward.
__call__
¶
Stochastically transform the input.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input |
Tensor
|
The input to transform. |
required |
noise_mask |
Tensor | None
|
An optional mask that selects the elements of |
None
|
**kwargs |
Any
|
Additional keyword arguments to the estimator modules. |
required |
__init__
¶
__init__(input_shape: tuple[int, ...], percent_to_mask: float | Tensor, scale: tuple[float, float] | Tensor = (0.0001, 2.0), shallow: float | Tensor = 1.0, seed: int | None = None) -> None
Construct a CloakNoiseLayer2_NoClip
with the given parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_shape |
tuple[int, ...]
|
The input shape of the layer. |
required |
scale |
tuple[float, float] | Tensor
|
Used to set bound on the min and max standard deviation of the stochastic transformation. |
(0.0001, 2.0)
|
percent_to_mask |
float | Tensor
|
The percentage of the outputs to mask. |
required |
shallow |
float | Tensor
|
A temperature-like parameter which controls the spread of the parameterization function. Controls both the magnitude of parameterized standard deviations and their rate of change with respect to rhos. |
1.0
|
seed |
int | None
|
Seed for the random number generator used to generate the stochastic transformation. If |
None
|
Note
Specifying percent_to_mask==0.0
with a NoClip
variant of Cloak Step 2 is functionally equivalent to Cloak Step 1, as no
masking occurs.
Note
In training mode, the threshold
buffer is recalculated over the learned standard deviations of the stochastic transformation,
and a new input mask is generated with each forward call. In eval mode, threshold
is static, and the cached mask from the most
recent mask calculation is used.
Raises:
Type | Description |
---|---|
ValueError
|
If |
__init_subclass__
¶
Set the default dtype to torch.float32
inside all subclass __init__
methods.
__setstate__
¶
Restore from a serialized copy of self.__dict__
.
forward
¶
Transform the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input |
Tensor
|
The input to transform. |
required |
noise_mask |
Tensor | None
|
An optional mask that selects the elements of |
None
|
**kwargs |
Any
|
Additional keyword arguments to the estimator modules. |
required |
Returns:
Type | Description |
---|---|
base.NoiseLayerOutput
|
The transformed input data. |
get_applied_transform_components_factory
¶
Create a function that returns the elements of the transform components ('mean'
and 'std'
) applied during the most recent
forward pass.
Specifically, the applied elements are those selected by the noise mask (if supplied) and standard deviation mask (if
std_estimator.masker is not None
). If no masks are used, all elements are returned.
The applied transform components are returned flattened.
This function is intended to be used to log histograms of the transform components.
Returns:
Type | Description |
---|---|
Callable[[], dict[str, torch.Tensor]]
|
A function that returns the the elements of the transform components applied during the most recent forward pass. |
Examples:
>>> from torch import nn
>>> from stainedglass_core import model as sg_model, noise_layer as sg_noise_layer
>>> base_model = nn.Linear(20, 2)
>>> noisy_model = sg_model.NoisyModel(
... sg_noise_layer.CloakNoiseLayer1,
... base_model,
... input_shape=(-1, 20),
... )
>>> get_applied_transform_components = (
... noisy_model.noise_layer.get_applied_transform_components_factory()
... )
>>> input = torch.ones(1, 20)
>>> noise_mask = torch.tensor(5 * [False] + 15 * [True])
>>> output = base_model(input, noise_mask=noise_mask)
>>> applied_transform_components = get_applied_transform_components()
>>> applied_transform_components
{'mean': tensor(...), 'std': tensor(...)}
>>> {
... component_name: component.shape
... for component_name, component in applied_transform_components.items()
... }
{'mean': torch.Size([15]), 'std': torch.Size([15])}
get_transformed_output_factory
¶
Create a function that returns the transformed output from the most recent forward pass.
If super batching is active, only the transformed half of the super batch output is returned.
Returns:
Type | Description |
---|---|
Callable[[], torch.Tensor]
|
A function that returns the transformed output from the most recent forward pass. |
Examples:
>>> from stainedglass_core import noise_layer as sg_noise_layer
>>> noise_layer = sg_noise_layer.CloakNoiseLayer1(input_shape=(-1, 3, 32, 32))
>>> get_transformed_output = noise_layer.get_transformed_output_factory()
>>> input = torch.ones(2, 3, 32, 32)
>>> output = noise_layer(input)
>>> transformed_output = get_transformed_output()
>>> assert output.output.equal(transformed_output)
initial_seed
¶
Return the initial seed of the CPU device's random number generator.
manual_seed
¶
manual_seed(seed: int) -> None
Seed each of the random number generators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
seed |
int
|
The seed to set. |
required |
seed
¶
Seed each of the random number generators using a non-deterministic random number.
ParameterWrapper
¶
Bases: Module
Returns its weight irrespective of input.
This class is an torch.nn.Module wrapper for its torch.nn.parameter.Parameter weight. The original Cloak implementation used
nn.Parameter
directly, but this class allows for modular swapping with more complex Module
s.