Skip to content

huggingface

Classes:

Name Description
SGHFLM

Eval harness model class for evaluating Stained Glass Transforms.

SGHFLM

Bases: HFLM

Eval harness model class for evaluating Stained Glass Transforms.

Parameters:

Name Type Description Default

transform_model_path

str

The path to the Stained Glass Transform.

required

apply_stainedglass

bool

Whether to apply the Stained Glass Transform.

required

debug_clean_embeds

bool

Pass clean embeddings to the model, only for debugging purposes.

False

seed

int | None

The seed to use for the Stained Glass Transform.

1234

args

Any

Additional arguments to pass to the parent class.

()

kwargs

Any

Additional keyword arguments to pass to the parent class.

{}

Methods:

Name Description
apply_chat_template

Return the json string of the chat history which will be processed by _apply_noise_tokenizer_mapper method.

tok_batch_encode

Encode a batch of strings into input ids and attention masks.

apply_chat_template

apply_chat_template(
    chat_history: list[dict[str, str]],
) -> str

Return the json string of the chat history which will be processed by _apply_noise_tokenizer_mapper method.

Parameters:

Name Type Description Default

chat_history

list[dict[str, str]]

The chat history.

required

Returns:

Type Description
str

The json string of the chat history.

tok_batch_encode

tok_batch_encode(
    strings: list[str],
    padding_side: str = "left",
    left_truncate_len: int | None = None,
    truncation: bool = False,
) -> tuple[torch.Tensor, torch.Tensor]

Encode a batch of strings into input ids and attention masks.

Parameters:

Name Type Description Default

strings

list[str]

The list of strings to encode.

required

padding_side

str

The side to pad the sequences.

'left'

left_truncate_len

int | None

The length to truncate the left side of the sequences.

None

truncation

bool

Whether to truncate the sequences.

False

Returns:

Type Description
tuple[torch.Tensor, torch.Tensor]

A tuple of input embeddings and attention masks if apply_stainedglass is True, otherwise the input ids and attention masks.