base
Classes:
Name | Description |
---|---|
BaseNoiseLayer |
Applies a stochastic transformation to a |
BaseNoiseLayer
¶
Bases: Module
, Generic[EstimatorModuleT, ParameterizationT, OptionalMaskerT]
Applies a stochastic transformation to a Tensor
using the given Estimator
s.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
int | None
|
Seed for the random number generator used to generate the stochastic transformation. If |
required |
|
Estimator[EstimatorModuleT, None, None]
|
The estimator to use to estimate the mean of the stochastic transformation. |
required |
|
Estimator[EstimatorModuleT, ParameterizationT, OptionalMaskerT]
|
The estimator to use to estimate the standard deviation and optional input mask of the stochastic transformation. |
required |
Methods:
Name | Description |
---|---|
__call__ |
Transform the input data. |
__getstate__ |
Prepare a serializable copy of |
__init_subclass__ |
Set the default dtype to |
__setstate__ |
Restore from a serialized copy of |
forward |
Transform the input data. |
get_applied_transform_components_factory |
Create a function that returns the elements of the transform components ( |
get_transformed_output_factory |
Create a function that returns the transformed output from the most recent forward pass. |
initial_seed |
Return the initial seed of the CPU device's random number generator. |
manual_seed |
Seed each of the random number generators. |
reset_parameters |
Reinitialize parameters and buffers. |
seed |
Seed each of the random number generators using a non-deterministic random number. |
__call__
¶
Transform the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
Tensor
|
The input to transform. |
required |
|
Tensor | None
|
An optional mask that selects the elements of |
None
|
|
Any
|
Additional keyword arguments to the estimator modules. |
required |
__init_subclass__
¶
Set the default dtype to torch.float32
inside all subclass __init__
methods.
__setstate__
¶
Restore from a serialized copy of self.__dict__
.
forward
¶
Transform the input data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
Tensor
|
The input to transform. |
required |
|
Tensor | None
|
An optional mask that selects the elements of |
None
|
|
Any
|
Additional keyword arguments to the estimator modules. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor
|
The transformed input data. |
get_applied_transform_components_factory
¶
Create a function that returns the elements of the transform components ('mean'
and 'std'
) applied during the most recent
forward pass.
Specifically, the applied elements are those selected by the noise mask (if supplied) and standard deviation mask (if
std_estimator.masker is not None
). If no masks are used, all elements are returned.
The applied transform components are returned flattened.
This function is intended to be used to log histograms of the transform components.
Returns:
Type | Description |
---|---|
Callable[[], dict[str, torch.Tensor]]
|
A function that returns the the elements of the transform components applied during the most recent forward pass. |
Examples:
>>> from torch import nn
>>> from stainedglass_core import model as sg_model, noise_layer as sg_noise_layer
>>> base_model = nn.Linear(20, 2)
>>> noisy_model = sg_model.NoisyModel(
... sg_noise_layer.CloakNoiseLayer1,
... base_model,
... target_parameter="input",
... )
>>> get_applied_transform_components = (
... noisy_model.noise_layer.get_applied_transform_components_factory()
... )
>>> input = torch.ones(1, 20)
>>> noise_mask = torch.tensor(5 * [False] + 15 * [True])
>>> output = noisy_model(input, noise_mask=noise_mask)
>>> applied_transform_components = get_applied_transform_components()
>>> applied_transform_components
{'mean': tensor(...), 'std': tensor(...)}
>>> {
... component_name: component.shape
... for component_name, component in applied_transform_components.items()
... }
{'mean': torch.Size([15]), 'std': torch.Size([15])}
get_transformed_output_factory
¶
Create a function that returns the transformed output from the most recent forward pass.
If super batching is active, only the transformed half of the super batch output is returned.
Returns:
Type | Description |
---|---|
Callable[[], torch.Tensor]
|
A function that returns the transformed output from the most recent forward pass. |
Examples:
>>> from stainedglass_core import noise_layer as sg_noise_layer
>>> noise_layer = sg_noise_layer.CloakNoiseLayer1()
>>> get_transformed_output = noise_layer.get_transformed_output_factory()
>>> input = torch.ones(2, 3, 32, 32)
>>> output = noise_layer(input)
>>> transformed_output = get_transformed_output()
>>> assert output.equal(transformed_output)
initial_seed
¶
Return the initial seed of the CPU device's random number generator.
manual_seed
¶
reset_parameters
¶
Reinitialize parameters and buffers.
This method is useful for initializing tensors created on the meta device.
seed
¶
Seed each of the random number generators using a non-deterministic random number.