transform
Modules:
Name | Description |
---|---|
text |
|
vision |
|
Classes:
Name | Description |
---|---|
StainedGlassTransformForText |
A client for creating protected input embeddings from text using Stained Glass Transform. |
TransformedImageVisualizationManager |
Captures |
StainedGlassTransformForText
¶
Bases: Module
, Generic[TokenizerWrapperReturnT_co, SchemaT_contra]
A client for creating protected input embeddings from text using Stained Glass Transform.
Note
Instances of this class simply wrap the noisy model and tokenizer wrapper passed into their constructor. This means that changes
made to the noisy model or tokenizer wrapper after the client's creation will affect the client's behavior and vice versa. If you
need an independent copy of the client, you should either serialize/deserialize it or use copy.deepcopy
.
Warning
Inferring the minimal parameters of the client requires a forward pass through the model. This assumes that the model has a static
computational graph, i.e. the forward pass will require the same parameters for any valid input. This inference is done implicitly
and automatically at initialization on an arbitrary input. To infer the minimal parameters using a particular input, see the
infer_minimal_parameters
method. To override
the inferred parameters with parameters of your choosing, you can pass in the parameter_names
argument to the constructor. Note,
however, that you must specify all of the parameters necessary to calculate the base model's input embeddings.
Warning
Calls to forward
or __call__
are not guaranteed to be thread-safe or reentrant.
Attributes:
Name | Type | Description |
---|---|---|
truncated_module |
The truncated module that wraps the noisy model. This module acts like the noisy model, but its forward method
will return early as soon as the noise layer is applied, i.e. its output will be the transformed input embeddings, without
calling any unnecessary layers of the noisy/base model. Generally, there is little need for users to interact with this
attribute directly. If you need to access the noisy model, you can do so via the |
|
tokenizer_wrapper |
The tokenizer wrapper to use for tokenizing the input text. In many cases, this will be the same tokenizer wrapper used to train the model. |
|
parameter_names_relative_to_base_model |
Parameters of the base model to be saved and loaded during serialization and
deserialization. This should be the minimal list of parameters necessary to get the base model's input embeddings. Each of
these parameter names should be relative to the base model. I.e. if the base model's input embedding submodule can be accessed
by |
|
name |
The name of the StainedGlassTransformForText. This is used to identify the transform when saving and loading. |
Examples:
Preparing the Model and Tokenizer wrappers:
>>> import transformers
>>> from stainedglass_core.huggingface.tokenization_utils import (
... tokenizer_wrapper as sg_tokenizer_wrapper,
... universal,
... )
>>> from stainedglass_core.model import noisy_transformer_masking_model
>>> from stainedglass_core.noise_layer import transformer_cloak
>>>
>>> BASE_MODEL_PATH = "tests/resources/tokenizers/mini-Mistral-7B-Instruct-v0.2"
>>> base_model_config = transformers.AutoConfig.from_pretrained(BASE_MODEL_PATH)
>>> base_model = transformers.AutoModelForCausalLM.from_config(base_model_config)
>>> embedding_size = base_model.config.hidden_size
>>> noisy_model = noisy_transformer_masking_model.NoiseMaskedNoisyTransformerModel(
... noise_layer_class=transformer_cloak.TransformerCloak,
... base_model=base_model,
... transformer_type=transformers.MistralModel,
... scale=(0.00000001, 1.0),
... config_path=BASE_MODEL_PATH,
... target_layer="model.embed_tokens",
... directly_learn_stds=True,
... use_causal_mask=True,
... rho_init=0,
... )
>>> tokenizer = transformers.AutoTokenizer.from_pretrained(BASE_MODEL_PATH)
>>> tokenizer_wrapper = sg_tokenizer_wrapper.TokenizerWrapper(
... tokenizer=tokenizer,
... model_type=type(base_model),
... include_labels=False,
... ignore_prompt_loss=False,
... prompt_type=sg_tokenizer_wrapper.PromptType.INSTRUCTION,
... )
StainedGlassTransformForText can (optionally) use explicitly specified parameters needed to get the base model's input embeddings. See below for how to automatically infer the minimal parameters.
>>> input_embedding_module = base_model.get_input_embeddings()
>>> input_embedding_parameters_ids = [
... id(p) for p in input_embedding_module.parameters()
... ]
>>> embedding_parameters_names = [
... name
... for name, p in base_model.named_parameters()
... if id(p) in input_embedding_parameters_ids
... ]
Creating the Stained Glass Transform:
>>> client = StainedGlassTransformForText(
... model=noisy_model,
... tokenizer_wrapper=tokenizer_wrapper,
... parameter_names=embedding_parameters_names,
... name="example_transform",
... )
Inference with the Client:
>>> transformed_input_embeddings = client(
... {
... "instruction": "What is the capital of France?",
... "system_prompt": "",
... "context": "",
... "response": "",
... }
... )
>>> transformed_input_embeddings
tensor(...)
Saving the client:
>>> import tempfile
>>> temporary_file = tempfile.NamedTemporaryFile()
>>> FILE_PATH = temporary_file.name
>>> client.save_pretrained(FILE_PATH)
Loading the client:
>>> loaded_client = StainedGlassTransformForText.from_pretrained(
... FILE_PATH
... )
>>> transformed_input_embeddings = loaded_client(
... {
... "instruction": "What is the capital of France?",
... "system_prompt": "",
... "context": "",
... "response": "",
... }
... )
>>> transformed_input_embeddings
tensor(...)
Minimal parameters are automatically inferred if the constructor is called with parameter_names=None
.
>>> client_inferred = StainedGlassTransformForText(
... model=noisy_model,
... tokenizer_wrapper=tokenizer_wrapper,
... parameter_names=None,
... name="example_transform",
... )
>>> client_inferred.parameter_names_relative_to_client
[...]
>>> client_inferred.save_pretrained(FILE_PATH)
Optionally, you can manually specify an input to use for the forward pass to infer the minimal parameters. Most of the time this is not necessary.
>>> client_inferred.infer_minimal_parameters(
... {
... "instruction": "What is the capital of France?",
... "system_prompt": "",
... "context": "",
... "response": "",
... }
... )
>>> client_inferred.parameter_names_relative_to_client
[...]
>>> client_inferred.save_pretrained(FILE_PATH)
Added in version 0.69.0.
Changed in version 0.73.0: The minimal parameters to be saved/loaded can now be automatically inferred via the `infer_minimal_parameters` method.
Changed in version 0.75.0: The minimal parameters are now inferred automatically at construction if `parameter_names` is `None`.
Changed in version 0.83.0: The `include_all_base_model_params` argument has been added to the constructor to include all base model parameters.
Changed in version 0.99.0: The `tokenizer_wrapper` argument now requires a `TokenizerWrapper` instance, instead of the deprecated `noise_mask_tokenizer_wrapper` object. The `forward` method now takes in a schema argument, which is the same data structure passed into the new tokenizer wrapper. See [][stainedglass_core.huggingface.tokenization_utils.TokenizerWrapper] for more information.
Changed in version v0.113.4: Allow setting a name for a StainedGlassTransformForText to aide in identification.
Methods:
Name | Description |
---|---|
__init__ |
Initialize the Stained Glass Transform text client. |
forward |
Create the protected input embeddings for the given text. |
from_pretrained |
Load the client from the given path. |
infer_minimal_parameters |
Infer the minimal parameters of the client, excluding parameters not needed for the client. |
manual_seed |
Set seed to enable/disable reproducible behavior. |
save_pretrained |
Save the client to the given path. |
state_dict |
Get the state dictionary of the client, excluding parameters not needed for the client. |
Attributes:
Name | Type | Description |
---|---|---|
parameter_names_relative_to_client |
list[str]
|
Get the minimal parameters of the client, excluding parameters not needed for the client. |
parameter_names_to_remove_relative_to_client |
list[str]
|
Get the parameters to ignore when saving the client, excluding parameters not needed for the client. |
stainedglass_core_version |
str | None
|
Get the version of Stained Glass Core used to save the Stainglass Transform. |
parameter_names_relative_to_client
property
¶
Get the minimal parameters of the client, excluding parameters not needed for the client.
This property will first check if self.parameter_names_relative_to_base_model
is set (this is usually set via the
parameter_names
argument in the __init__
method). If it is, then it will return the parameters defined there, but with the
submodule names changed to be relative to the client.
If self.parameter_names_relative_to_base_model
is not set, then it will return the parameters inferred by the
infer_minimal_parameters
method's most recent call. This requires that the infer_minimal_parameters
method has been called at
least once before accessing this property.
Note
self.parameter_names_relative_to_base_model
, if specified, will override the inferred parameters in calculating this property.
Returns:
Type | Description |
---|---|
list[str]
|
The minimal parameters of the client, excluding parameters not needed for the client. |
Raises:
Type | Description |
---|---|
ValueError
|
If the minimal parameters of the base model have not been specified manually or inferred automatically. |
parameter_names_to_remove_relative_to_client
property
¶
Get the parameters to ignore when saving the client, excluding parameters not needed for the client.
This is effectively the set of all parameters in the client that are not in parameter_names_relative_to_client
, considering
duplicate parameters shared by multiple modules (and thus can be accessed by multiple names).
Returns:
Type | Description |
---|---|
list[str]
|
The parameters to ignore when saving the client, excluding parameters not needed for the client. |
stainedglass_core_version
property
¶
stainedglass_core_version: str | None
Get the version of Stained Glass Core used to save the Stainglass Transform.
Returns:
Type | Description |
---|---|
str | None
|
The version of Stained Glass Core used to save the Stained Glass Transform. |
__init__
¶
__init__(
model: NoiseMaskedNoisyTransformerModel[
Any, ..., TransformerCloak[Any]
],
tokenizer_wrapper: TokenizerWrapper[
TokenizerWrapperReturnT_co, SchemaT_contra
],
parameter_names: list[str] | None = None,
include_all_base_model_params: bool = False,
name: str | None = None,
) -> None
Initialize the Stained Glass Transform text client.
Note
Although any valid tokenizer wrapper can be used with this class, recall that this client object is used for inference and is
often embedded into some application that takes user text input. Thus, in practice, we recommend using a tokenizer wrapper that
takes in a string or simple data structure that the user application will pass in. The forward
and __call_
methods will have
the same args/kwargs as the tokenizer wrapper. See the tokenizer_wrapper
argument and examples for more information.
Warning
The constructor will automatically infer the minimal base model parameters required to calculate the base model's input
embeddings. This requires a forward pass and assumes the model has a static computational graph. If you want to manually specify
the minimal parameters, you can pass in the parameter_names
argument. Note, however, that you must specify all of the
parameters necessary to calculate the base model's input embeddings. Alternatively, if you would like to infer the minimal
parameters using a particular input, see the
infer_minimal_parameters
method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
NoiseMaskedNoisyTransformerModel[Any, ..., TransformerCloak[Any]]
|
The NoisyModel used to train Stained Glass Transform. |
required |
|
TokenizerWrapper[TokenizerWrapperReturnT_co, SchemaT_contra]
|
The tokenizer wrapper to use for tokenizing the input text. In many cases, this will be the same tokenizer
wrapper used to train the model. For more details, see
|
required |
|
list[str] | None
|
Parameters of the base model to be saved and loaded during serialization and deserialization. This should be
the minimal list of parameters necessary to get the base model's input embeddings. If |
None
|
|
bool
|
Whether to include all base model parameters in the client. If |
False
|
|
str | None
|
The name of the StainedGlassTransformForText. This is used to identify the transform when saving and loading. |
None
|
Changed in version 0.73.0: The `parameter_names` argument can now be `None` to not explicitly specify the minimal parameters.
Changed in version 0.75.0: The minimal parameters are now inferred automatically at construction if `parameter_names` is `None`.
Changed in version 0.83.0: The `include_all_base_model_params` argument has been added to the constructor to include all base model parameters.
Changed in version 0.99.0: The `tokenizer_wrapper` argument now requires a `TokenizerWrapper` instance, instead of the deprecated `noise_mask_tokenizer_wrapper` object. The `forward` method now takes in a schema argument, which is the same data structure passed into the new tokenizer wrapper. See [][stainedglass_core.huggingface.tokenization_utils.TokenizerWrapper] for more information.
forward
¶
forward(schema: SchemaT_contra) -> torch.Tensor
Create the protected input embeddings for the given text.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
SchemaT_contra
|
The schema containing the prompt to protect. This is the same data structure passed into the tokenizer wrapper. |
required |
Returns:
Type | Description |
---|---|
torch.Tensor
|
The embeddings protected by Stained Glass Transform. |
Changed in version 0.99.0: The `tokenizer_wrapper` argument now requires a `TokenizerWrapper` instance, instead of the deprecated `noise_mask_tokenizer_wrapper` object. The `forward` method now takes in a schema argument, which is the same data structure passed into the new tokenizer wrapper. See [][stainedglass_core.huggingface.tokenization_utils.TokenizerWrapper] for more information.
from_pretrained
classmethod
¶
from_pretrained(
path: str | Path,
map_location: MAP_LOCATION = None,
pickle_module: ModuleType = dill,
*pickle_load_args: Any,
**pickle_load_kwargs: Any,
) -> Self
Load the client from the given path.
Note
Because this method uses pickle internally, the saved object is not guaranteed to work if the client application uses a different version of Python or PyTorch.
Warning
This method uses pickle internally, which is known to be insecure. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling. Never load data that could have come from an untrusted source in an unsafe mode, or that could have been tampered with. Only load data you trust.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str | Path
|
The path to load the client from. |
required |
|
MAP_LOCATION
|
The location to map the client to. See torch.load for more information. |
None
|
|
ModuleType
|
The pickle module to use for serialization. See torch.load for more information. |
dill
|
|
Any
|
Additional positional arguments to pass to torch.load. |
required |
|
Any
|
Additional keyword arguments to pass to torch.load. |
required |
Returns:
Type | Description |
---|---|
Self
|
The loaded client. |
infer_minimal_parameters
¶
infer_minimal_parameters(
schema: SchemaT_contra | None = None,
) -> None
Infer the minimal parameters of the client, excluding parameters not needed for the client.
This method will infer the minimal parameters of the client by tracing a forward pass through the model. This is useful when the minimal parameters are not known ahead of time.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
SchemaT_contra | None
|
The schema containing the prompt to protect. This is the same data structure passed into the tokenizer wrapper. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If the minimal parameters of the client have been specified |
Added in version 0.73.0.
Changed in version 0.75.0: Minimal parameters can now be inferred without providing a sample input.
Changed in version 0.99.0: The `tokenizer_wrapper` argument now requires a `TokenizerWrapper` instance, instead of the deprecated `noise_mask_tokenizer_wrapper` object. The `forward` method now takes in a schema argument, which is the same data structure passed into the new tokenizer wrapper. See [][stainedglass_core.huggingface.tokenization_utils.TokenizerWrapper] for more information.
manual_seed
¶
Set seed to enable/disable reproducible behavior.
Setting seed to None
will disable reproducible behavior.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
int | None
|
Value to seed into the random number generator. |
required |
Added in version 0.109.0. This utility can be used to set seed value in the noise layer thereby enabling deterministic behavior within SGT.
save_pretrained
¶
save_pretrained(
path: str | Path,
pickle_module: Any = dill,
pickle_protocol: int = 2,
) -> None
Save the client to the given path.
Note
Because this method uses pickle internally, the saved object is not guaranteed to work if the client application uses a different version of Python or PyTorch.
Warning
This method uses pickle internally, which is known to be insecure. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling. Never load data that could have come from an untrusted source in an unsafe mode, or that could have been tampered with. Only load data you trust.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str | Path
|
The path to save the client to. |
required |
|
Any
|
The pickle module to use for serialization. See torch.save for more information. |
dill
|
|
int
|
The pickle protocol to use for serialization. See torch.save for more information. |
2
|
state_dict
¶
Get the state dictionary of the client, excluding parameters not needed for the client.
The parameters considered necessary for the client are those passed into the constructor as parameter_names
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
str
|
A prefix added to parameter and buffer names to compose the keys in state_dict. |
''
|
|
By default the |
False
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
The state dictionary of the client, excluding parameters not needed for the client. |
TransformedImageVisualizationManager
¶
Captures NoisyModel
input images and intermediate activations and creates visualizations, formatted as a grid of images where
each row contains an input image and its corresponding activation.
Methods:
Name | Description |
---|---|
__init__ |
Construct a new |
prepare_activation_images |
Collect the input and activation tensors from the most recent forward pass and populate them into a grid of images for each |
Attributes:
Name | Type | Description |
---|---|---|
grids |
ActivationImages
|
The tensors representing the grid of images to visualize. |
__init__
¶
__init__(
noisy_model: NoisyModel[ModuleT, ..., NoiseLayerT],
input_name: str | None = None,
max_examples: int = 4,
max_color_channels: int = 3,
) -> None
Construct a new TransformedImageVisualizationManager
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
NoisyModel[ModuleT, ..., NoiseLayerT]
|
The model to visualize input images and activations for. |
required |
|
str | None
|
The name of the |
None
|
|
int
|
The maximum number of rows to display in the visualizations. |
4
|
|
int
|
The maximum number of individual color channels to additionally display in each visualization. If the target layer has more than 3 color channels, these will be displayed in grayscale. |
3
|
Raises:
Type | Description |
---|---|
ValueError
|
If |
ValueError
|
If |
prepare_activation_images
¶
Collect the input and activation tensors from the most recent forward pass and populate them into a grid of images for each activation.
Returns:
Type | Description |
---|---|
ActivationImages
|
A dictionary of image tensors, each formatted as a grid of images, where each row corresponds to a specific example. |